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Appendix: Notes on the Quantity Discounting Solution

Section 2 of the paper discusses the optimal (profit maximizing) solution for wholesale ladder pricing
for the case where retailers have heterogeneous demands and (marginal) costs. The solution is
compared with that obtained from optimal (profit maximizing) quantity discounting. Derivation of
the optimal quantity discount pricing schedule was omitted from the paper. This was to save space,
and because the technique used (the demand profile approach) is standard. That said, the derivation
has some interest, because there are very few examples dealing with the bivariate distribution case in
the literature, particularly where the optimal schedule prices some retailers out of the market.

This appendix uses the demand profile approach (e.g. Wilson [1993]) to solve for the optimal quantity
discounting tariff (and associated wholesaler profit) for the case where demand is linear (q=6—p),

and marginal cost « and the demand intercept & have a bivariate uniform distribution on support
[O,l] X [O, Qh] . The approach is feasible because a change of variable allows the bivariate distribution

problem to be effectively reduced to a univariate one (see below). The analysis involves
straightforward (but rather extensive and tedious) algebra. This can be presented more compactly, but
I have left intermediate steps in for the benefit of anyone who might (masochistically) wish to follow
things in detail.

Let W(q) be the payment made by a retailer when it purchases quantity g, whilst w(q) is the
marginal wholesale price (on the range of quantities chosen by retailers, it is assumed that W (q) is

continuous and differentiable, such thatw(q) =W'(q) ). A (0, @) retailer’s profit on purchasing
quantity q is

7, =(pP-a)q-W(q)=(¢0-q-a)a-W(q) , (A1)
and the first order necessary condition (FONC), for a retailer that participates, is

or, 100=60-20—-a—-w(q)=0. (A.2)
Define the variable

z:=w(q)+2q. (A.3)
Then from (A.2)

O—a=2q+w(Q)=z2 . (A.4)

Notice that, for given w(q) , participating (&, &) retailers with the same z-score choose the same q.
Retailers who participate and buy g or more satisfy the condition

O—a>z=2q+w(q) . (A5)



In addition, there is the participation condition that the retailer profit 7z, should be non-negative;
7, =(0-q-a)q-W(q) =0 . (A.6)

Naturally, some retailers are excluded — they are priced out of the market. For example, all with
0 < a are certainly excluded as their costs are greater than their maximum willingness to pay (as 6
is the upper limit of the demand curve). To the extent that they face a positive wholesale charge,

exclusion will be greater. Thus there is a critical value for z, denoted z,, such that all retailers with
0 —a >z, participate (the optimal value for z, is analyzed later). Given retailers with 6 < are
certainly excluded, clearly z, >0. Equally, if it were the case that z, > 6, , this would mean zero

participation and zero profit, so it must be that the optimal z, € [0, Qh]. The shape of the participation
region is illustrated in figure A.1 below.

Figure A.1
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The participation region € is defined as
Q={(6,2):6€[0,6,],a€[01],6-a>2z,|

(the sum of the two shaded regions in figure A.1). The ‘number’ of retailers who choose at least q
(for some arbitrary q) is denoted N(q) (and the ‘proportion’ of retailers is simply N(Q)/ 6, given

the total area of the rectangle is ,). Both Qand N(q) are depicted as trapezoidal areas in figure

A.1. However, notice that, if z, > 6, —1 then € is triangular, asis N(q) if z =8, —1(this
complicates the exposition somewhat). For a given choice of w(q), q depends on z via (A.3), and

! Note that, as in Wilson’s [1993, p. 157-8] original example, analysis based solely on FONCs is satisfactory —
that is, for retailers who choose g >0, as per the FONC (A.2), the participation constraint (A.6) is indeed
satisfied (it is straightforward to verify that this is the case once the optimal tariff has been found).
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hence N(q) is a function of z; the rate of change of N(q) with respect to z will then be different
depending on whether z >, —1 or not. Specifically, from Figure A.1 the area N(q) is given as

N@)=21+(0,-1-2)=6,-3-2  z€[z,,max(z,.6,-1)]
N(g)=2(4,—2)° z e[max(z,,6,-1).6,]. (A7)
The profit 7, earned by the wholesaler on those retailers who choose to buy the g unit is (using
(A.3)):
7, = N(@)w(q) = w(a) (6, -1 -2)
=w(q) (6, —%—w(a)—2q) z €[z,,max(z,,6, -1)]

7, = N(Q)W(q) =w(q) (6, —2)°
=w(q) (6, ~w(a)-2q)° z e[max(z,,6, -1),6,]. (A8)

The demand profile approach involves point-wise optimizing w(q) for each value of q (this is
followed by finding the optimal level of participation — see later). Thus the FONC is that

oz, 1 ow(a) = (6, -3 —w(a)—29)-w(q) =0
=w*(q)=%(6,-1)-q z €[z,,max(z,,6, -1)]

om,, | ow(g) =1(8, —w(a)—29)° —w(q) (6, —w(q) —2q) =0
= 1(6, - w(q)—2q) - w(q) =0 = w*(q) =16, -2

z e[max(z,.6,-1),6,]. (A.9)

This gives the optimal tariff for participating retailers defined for z € [ze A ] Substituting for z
using (A.3), and using the formula for w*(q), the ranges can be transposed into ranges for q; thus
for ze[z,,max(z,,6, —1)], given

z=20+w(q)=2q+%(6,—1)-a=q+1(6,-%),

Z,=Qq, +%(9h _%)’

SO

ze(z,,max(z,,6,-1)]=q+4(6, - 1) e[ q, +1(6, - %), max(q, + (6, -1).6,-1) |

= q € |:qe1 max(qe,eh _1_%(9h _%))] = I:qe, max(qel%eh _%)]

Similarly for z [ max(z,,6, —1),6,]; in this case,
z=2q+w(q)=2q+36,-50=2q+16,,

Ze =%qe+%0h’

S0

z e[max(z,,6, -1),6,]=4q+16, e[ max(4q, +16,.6,-1).6, |
:qe[max(qw%eh_%)’%eh]’



w* () =3(6,-3)-d qelq,, Max(,.36,-3) ]

w*(@) =36, -3 qe[Max(q,, 16, —2),16, | (A.10)
is the optimal tariff. Notice this is continuous and piecewise linear. Notice also that the wholesale
price schedule below q, is undefined. Let W, =W (q,) be the payment made by marginal retailers
when they choose to buy g, . Potentially, W, >0,q, >0 , although in what follows it is proven that
the optimal solutions actually require W,* =0, q,*=0. The associated outlay schedule is

W *(q) =W2(q) =W, +jq‘:w*(t)dt AW, +jqqe(%9h —1-t)dt

=W, +4(6,-1-0a)a-1(6,-%-q.)q. q €[ 9., Max(q,, 16, -3 ]

W * (@) =W (a) =W, + [ w*(D)ct

:W +J'Max(qer%0h74)(

¢ Ja

6, - —t)dt+ |’ —2t)dt

Max (e , 56k —3 (3 "
qe[Max(@.36, D361 (a11)

(where it is convenient to label the wholesale revenue function as W*? ,Wb for the two cases).
Simplifying the latter,

e (@) =W, +[4(6, 3 -t P s[4 -0t
qe[Max(q..36,-3).36,] (A12)

soif 0, <16, —32(z,<6,-1),

-2

Wb(q)zwe+[§(9h—%—t)t]§e _§+§[(¢9h—t)t]; 4

=W, +(%6,°-46,+%)-3(6,-1-0.)a. +1(4,-a)a,
whilst if g, > 36, —2(z,>6,-1)
W* (@) =W, +3[ (6, ~t)t], =W, +3((6,~a)a—(6,~4)a.). (A13)
The optimal choice of q(é, ) is given from (A.4) and (A.10);

2q+w*(q) =0-a, (A.14)
so that
20+wW*(q)=0-a=2q+%(6,-%)-q=0-a
:>q(9 CZ) 6 o — ( ) _%( _%) ZE[Ze,maX(Ze,Hh—l)]
2q+w*(Q)=0-a=2q+3160,-2q=60-
=q0,a)=2(0-a)-16,=322-16, z e[max(z,.6, -1),6,]. (A.15)

Note that this means the payment W can be viewed as a function of q or of z — by substituting (A.15)
into (A.11)/(A.13) (it is convenient, with a slight abuse of notation, to write W(q) or W(z) in what
follows to indicate this dependence).



Given there is uniform density of 1/6, on [0,1] x[0, 8] , overall profit earned by the wholesaler,
I1,, can be written as

I, =”QW(q(9,a))(1/6?h)d9da

=(1/9h)(j

Ze

Max(z,,6,-1) 6,

Wa(z)dz+j (Gh—z)Wb(z)dz) (A.16)

where the simplification from double integral to single integral can be explained diagrammatically
(see figure A.2).

Max(z, 6, -1)

Figure A.2
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First note that the strip of area 6 A in figure A.2 is equal to 6z (area of a parallelogram is simply its

vertical height times its base). For a given value of z, the same quantity g is taken, and the same
payment W is made, hence the value of the integral is given as the integral of W (z)dz for

z€[0,6, —1] as in the line 2 first integral in (A.16). When z enters the range [6,_,,6, ], the area is as
depicted by 6 A, at z, in figure A.2; the area is now given as the difference in the two right angled
triangles with sides of length 6, —z and 6, —z—-01Z; thus

SA=1(6,-2)" ~1(6,-z—62)’

=1(6,~2)" - 1(6,~2)" +(6,~2)62-162° =(6, —2) 52 -1 57%.
Hence value of line 2 second integral in (A.16) on the interval [Hh_l, Hh] is given by the integral of
W(z)(6,—z)dz.

Participation analysis:
The question arises as to whether, for a given choice of parameter value for 6, , whether z, <6, -1

or not (equivalently, whether q, is greater or less than 36, —2), since this affects the formula for
W.

Case(a)-if 9, <36,-2 (<=12,<6,-1):

Marginal retailers have zero profitability:



T, = (pe _ae)qe _We = (ee _qe _ae)qe _We

(A.17)
= (Ze _qe)qe _We = o;
and the retailer FONC holds:
Ze - zqe +W*(qe) = 2qe +%(0h _%)_qe = qe +%(8h _%)
(A.18)

=17,-0,=%(6,-1).

Notice there is three choice variables, z,,q,,W, and two equations. Choosing z, thus determines
both q,,W,. Specifically,

0, =2, —3(6 —3), (A.19)
and

W, =(z,-9,)9, = (Ze _(Ze _%(Qh _%)))(Ze _%(gh _%))

(A.20)
=3(6,-3)(z-5(6,-3))-

Since in this case Z, <6, ~1, 50 Max(z,,6, ~1) =6, -1, the overall profit, (A.16), can be written as
-1 a 6,
6,11, :Le W (Z)dZ+I€h_l(9h—z)Wb(z)dz
6,-1
=[, (W, +3(6,-3-0)a-3(6, ~3-a.)q. )z (A21)

O

+ l(gh _Z)(We +(2_149hz -36, +3_32)_%(‘9h ~3-0.)0. +3(6, _q)q)dz'

6~
Now

b
Iﬂh—l(eh —-z)dz=1% (A.22)
(the area of the right angled triangle with unit length base and height), so

[" (0 -2) (W, +(£6.:-36,+3)-3(6, -3 -a.)q. )iz

» (A.23)
4w (507 -10+2) -0 -1-a)a)
Also
Ij_l(we_%(eh_%_qe)qe)dz:(We—%(é’h—%—qe)qe)(@h—l—ze) , (A.24)
and



(A.25)
+I;h_1(¢9h - z)(%(@h -(32-16,))(3z-16, ))dz
= [ (60, ~3-42)(42-20, +1)dz + % [ (6,~2)(40,~32+0,)(32-0, )z,
where

(66, —3—42)(4z-20, +1) =(-126,> +126, —3+3220, —162-162° ) (A.26)
and

(6,—12)(46,-32+6,)(32—6,)=-56," +236,°2—276,2° +97°. (A.27)

Putting this together,

&
+f, (0~ 2) (W +(£67 26, +%)-4(0, -1 -0a.)d. +3(, ~a)a)dz

Z(We -3(6, _%_qe)qe)(eh _1_Ze)+%(we -3(6,-3-9.)a. +(2_140h2 -36, +3_32))

e :hil(GHh—3—4Z)(4Z—29h +1)dz+4—18 :h l(Hh—z)(4(9h—32+«9h)(32—0h)d2.

h —

(A.28)

Substituting for W, , expanding, and performing the integrations gives
2
001, =3(2.-36,+%) (6, -2, _%)Jr%(i‘ghz —36, "’%)

+3A2((—129h2 +120,-3)(6, -1-2,)+8(26,-1)((6,-1)" - 2.7 ) -((6,-1)" - zj))

+%(—59h3 +26,° (‘9h2 - (6, _1)2)_2_370h (Hhs -(4 _1)3)+%(0h4 -4 _1)4))'

The optimal choice of z, can now be found via the FONC that (A2
a(‘9hHW )/829 - _%(Ze _%Qh +%)2 +(Ze _%gh +%)(0h —Z _%)
%(—12(—@2 +6,-1)-16(26,-1)z, +16262) =0. (A.30)
This can be simplified to get
z,*=1(6,-3%). (A31)

Substituting this back into (A.29) gives the optimal solution. Notice also that, from (A.19) and (A.31)
, 0,*=0 and hence from (A.20), W,*=0. That is the wholesale tariff is defined for all q =0 .
Finally, note that this case applies when

2,<6,-1=>4(6,-1)<6,-1=6,>3

(and case (b) below will be shown to apply when 6, <3).

Case(b)-if g, >26,—3:0r 2, >6, -1
As in (A.17), marginal retailers have zero profitability:
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ﬂ-r = (pe a )qe = (9 qe ae)qe _W

(A.32)
= (Ze _qe)qe _We = o :>We = (Ze _qe)qe'
and the retailer FONC holds, but in this case w*(q) =16, —%q, so
Zezzqe—l_w*(qe):zqe—l_%g qu 3qe gh
(A.33)

= Ze _qe :%(qe +0h)'qe :Z e _%eh'
As before there are three choice variables, z,,q,,W, and two equations relating these variables.
Choosing z, thus determines both q,,W,. From (A.32),(A.33),
W, =(z,-0,)0, =(z,—22,+16,)(32,-16,)=%(2.+6,)(32.-6,) (A34)

Since in this case z, > 6, —1, so Max(z,, 6, —1) =z, the overall profit, (A.16), can be written as

6,11, =fj(6h —Z)W"(z)dz = J':h (6,-2)(W, +1((6,—9)a—(6,—a.)q.))dz.  (A35)

Note the first integral in the RHS of (A.16) is now zero. Note also that W"(q) is given by (A.13) as
W®(q) =W, +1((6,-a)a—(6,—0.)d, ) whereq=2z—16, and g, =32, —46, from (A.15).
Hence

001, = [ (0, - )W +5((6,~(32-20))(32-28) (6, - (32.-44,)) (32~ 14,)) )z

_f“ ~2)(& (2. +6,)(32,6,)+3(3(56, ~32)(32-6,)~ & (56, ~32,) (32, - 6,)) ) dz.

(A.36)
Expanding and integrating, this eventually gives

6
1 1 2,1 3L 9,4\"
6,11, —E(O‘oz+50‘12 +30,7° +512 ) , (A.37)

where
=-30°-126,°z, +186,2.%,

o, =216, +126,z, —18z.7,

o, =-276,. (A.38)
Optimal z, is found via the FONC as in case (a); thus

-36,° -126,’z, +186,2,% ) +(186,> + 36,” +126,z, —182,% ) 7,
00,11, 16z, =% (=34, " h27)+ (186, +36, h )
+(-96, 186, ) z,” +9z,°

+1 (( 126, +366,2, ) + (126, —362,) 2)dz = 0,

which can eventually be reduced to

0°-76,°z, +116,2.°> +32,° =0. (A.39)
Writing x =2z, /6, , (A.39) can be factorized to get
3(x—1)(x—2-3)(x—2++/3) =0. (A.40)

The solutions are thus z, /6, = % or 2+ x/§ or 2—»\/5. The second solution is greater than 1,

which violates the requirement that z, [O o, ]) and the third solution violates non-negativity (that
q.20; 0, =3z,-1 (2 J—) —1(5 3x/_)9 <0). Sothe solutionis z,*=316, .

This solution also |mpI|es Q. *=3z, *—ZHh =0 and W,*=0.
Notice that z, > 6, —1=16, >0, —1= 6, <3 ; that is, this case applies when 6, <32
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Profit is then given by (A.37) evaluated at z, *. This completes the analysis; equations (A.29) and
(A.37) are used (in conjunction with the respective formula for z, *) in calculating profitability under
optimal quantity discounting and hence in the construction of the comparison table in the main paper.



